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ABSTRACT

This paper describes in detail a flexible approach to nonstationary time series analysis based

on a Dynamic Harmonic Regression (DHR) model of the Unobserved Components (UC)

type, formulated with a stochastic state space setting. The model is particularly useful for

adaptive seasonal adjustment, signal extraction and interpolation over gaps, as well as

forecasting or backcasting. The Kalman Filter and Fixed Interval Smoothing algorithms are

exploited for estimating the various components, with the Noise Variance Ratio and other

hyper-parameters in the stochastic state space model estimated by a novel optimisation

method in the frequency domain. Unlike other approaches of this general type, which

normally exploit Maximum Likelihood methods, this optimisation procedure is based on a

cost function defined in terms of the difference between the logarithmic pseudo-spectrum of

the DHR model and the logarithmic autoregressive spectrum of the time series. This cost

function not only seems to yield improved convergence characteristics when compared with

the alternative ML cost function, but it also has much reduced numerical requirements.

1. INTRODUCTION

Many socio-economic and environmental time series exhibit periodic, seasonal or cyclical

effects of various kinds. For instance, both climate and socio-economic phenomena are

influenced by annual seasonal variations; life cycles display both diurnal and annual rhythms;

and quasi-periodic business cycles influence economic observations. In order to investigate

such periodic or quasi-periodic phenomena, as well as performing functions such as

forecasting, interpolation over gaps or seasonal adjustment, one needs to estimate the

periodic components in some manner. This estimation problem is complicated by the fact that

the periodic variations which affect real time series are often nonstationary, in the sense that

their amplitude and phase tend to change over the observation interval. Various identification

and estimation procedures have been suggested for handling such nonstationary periodicity

but some of the most powerful originate in the statistical and econometrics literature, where

the estimation problem is often termed signal extraction.
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One of the oldest and best known techniques for signal extraction is the Census X-11 method

(Shiskin et al, 1967) and its later extensions X-11 ARIMA, and X-12 ARIMA (e.g. Dagum,

1980,1988; Findley et al., 1992, 1996). However, three other important approaches to signal

extraction have been developed in recent years and have gained favour because of their

greater inherent flexibility. These methods are based on: (a) the decomposition of ARIMA or

‘reduced form’ models (e.g. e.g. Box et al. (1978); Hillmer and Tiao (1982); Hillmer et al.

(1983); Burman (1980); Gómez and Maravall (1996) and Maravall (1993); (b) optimal

Regularisation  (see e.g. Akaike, 1980; Jakeman and Young, 1979, 1984; Young, 1991;

Young and Pedregal, 1999a); or (c) formulation of the problem within a stochastic State

Space (SS) setting. This latter SS approach provides the most obvious formulation of

Unobserved Component (UC) models of the kind discussed in the present paper. Here, the

UC model is considered as the observation equation of a discrete time, stochastic SS model

and the associated state equations are used to model each of the components in Gauss-

Markov (GM) terms.

This SS formulation has its origin in the 1960’s when control engineers realised that

recursive estimation and, in particular, the Kalman Filter (KF), could be applied to the

problem of estimating time variable parameters in regression-type models, usually within a

dynamic systems context (see e.g. Young, 1969, 1974, 1984). More recent developments (see

e.g.. Norton, 1975; Harrison and Stevens, 1976; Harvey, 1984, 1989; West and Harrison,

1989; Young, 1988, 1989, 1994; Young et al, 1989; Ng and Young, 1990) have shown how

this approach can be extended, in various ways, to problems of forecasting, backcasting,

smoothing and signal extraction. Here, the most influential recent contributions are probably

those of Harvey, whose Structural Model  approach is now widely available in the successful

STAMP (Structural Time Series Analyser, Modeller and Predictor: see Koopmans et al,

1995) computer program. In addition to the Kalman filter, perhaps the most important of the

methodological developments in this area of study have been the exploitation of various

forms of the recursive Fixed Interval Smoothing techniques (e.g. Bryson and Ho, 1969),

which provide an ‘off-line’, adaptive approach to time variable parameter and state

estimation, so allowing for optimal signal extraction, smoothing, and interpolation over gaps

in the data.

The Dynamic Harmonic Regression (DHR) model considered in the present paper is of the

UC type and is formulated within the stochastic SS setting. It is important to stress, however,

that this approach can yield asymptotically equivalent results to the other approaches

mentioned above if the models on which they are all based are made compatible (see above

references).  Nevertheless,  it seems to the authors (see Young and Pedregal, 1999a) that the

SS formulation is not only a more natural and satisfying setting for UC models, but it is also

more attractive computationally because it so nicely integrates the processes of forecasting,

interpolation and seasonal adjustment into a single recursive framework. To paraphrase
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Wiener (1949), it seems to provide a rather natural approach to the “extrapolation,

interpolation and smoothing of nonstationary time series”. As we shall see, the main

difference between the DHR approach and related techniques,  such as  Harvey’s Structural

Modelling method, lies in the formulation of the UC model for the periodic components and

the method of optimising the hyper-parameters in this model.

2. THE UNOBSERVED COMPONENTS MODEL

The DHR model is a special case of the univariate UC model which has the general form:

yt = Tt + Ct + St + f ut( ) + Nt + et               et ~ N{0,σ2} (1)

where yt  is the observed time series; Tt  is a trend or low frequency component; Ct  is a

sustained cyclical or quasi-cyclical component (e.g. an economic cycle) with period different

from that of any seasonality in the data; St  is a seasonal component (e.g. annual seasonality);

f ut( )  captures the influence of a vector of exogenous variables ut , if necessary including

stochastic, nonlinear static or dynamic relationships; Nt  is an stochastic perturbation model

(i.e. coloured noise modelled as an AR or ARMA process); and, as shown, et  is an ‘irregular’

component, normally defined for analytical convenience as a normally distributed Gaussian

sequence with zero mean value and variance σ2  (i.e. discrete-time white noise). In order to

allow for nonstationarity in the time series yt , the various components in (1), including the

trend Tt , can be characterised by stochastic, Time Variable Parameters (TVP’s), with each

TVP defined as a nonstationary stochastic variable, as discussed below.

In practice, not all the components in (1) are necessary: indeed, the simultaneous presence of

all these components can induce identifiability problems and so use of the complete model

(1) is not advisable in practice unless adequate precautions are taken. The DHR model is one

such decomposition which contains only the trend, cyclical, seasonal and white noise

components: i.e.,

yt = Tt + Ct + St + et (2)

Here, the most important unobserved components are the seasonal term St  and the cyclical

term Ct . Although these are both modelled in the same manner, it is convenient to define

them separately, i.e.,

Seasonal:        St = ai,t cos ωit( ) + bi,t sin ωit( ){ }
i=1

Rs

∑ (2a)

where ai,t  and bi,t  are stochastic TVP’s and ωi , i = 1,2,..., Rs  are the fundamental and
harmonic frequencies associated with the seasonality in the series; and

 Cyclical:       Ct = α i,t cos f it( ) + βi,t sin f it( ){ }
i=1

Rc

∑ (2b)
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where α i,t , βi,t  are stochastic TVP’s and f i , i = 1,2,..., Rc  are the frequencies associated

with the (normally longer period) cyclical component. In both cases, the frequency values are

chosen by reference to the spectral properties of the time series, as discussed later. The trend

component Tt  can also be considered as a stochastic, time variable ‘intercept’ parameter in

the DHR and so it could be incorporated, if so desired, into the cyclical or seasonal

components as a zero frequency term (i.e. by introducing an extra term in the summations at

i = 0 withω0 or f 0 set equal to zero). This DHR model can be considered as a

straightforward extension of the classical, constant parameter, harmonic regression (Fourier

series or trigonometric) model, in which the gain and phase of the harmonic components can

vary as a result of estimated temporal changes in the parameters ai,t , bi,t , α i,t  and βi,t  .

In the simplest case, each of these ai,t , bi,t , α i,t  and βi,t  stochastically variable parameters,

as well as the trend component Tt  (see above comments), are defined by a two dimensional

stochastic state vector xi,t = li,t di,t[ ]T
, where li,t  and di,t  are, respectively, the changing

level and slope of the associated trend or TVP. The stochastic evolution of each xi,t  is

assumed to be described by a Generalised Random Walk (GRW) process of the form,

                    xi,t = Fixi,t-1 + Giη i,t      i = 1,2,..., R (2c) 

where R = 1 + Rc + Rs  and,

Fi =
α β
0 γ







 , Gi =

δ 0

0 1









This general model comprises as special cases the Integrated Random Walk (IRW:

α = β = γ = 1; δ = 0); the scalar Random Walk (RW: scalar but equivalent to (2c) with

α = β = δ = 0 ; γ = 1); the intermediate case of Smoothed Random Walk (SRW: 0 < α <1;

β = γ = 1; and δ = 0 ); and Harvey’s ‘Local Linear Trend’ (LLT:α = β = γ = 1; δ = 1) and

‘Damped Trend’ (DT: α = β = δ = 1; 0 < γ <1), see Harvey (1989) and Koopmans et al.

(1995). The GRW model was introduced in Jakeman and Young (1979, 1984); and is

discussed further in Young et al . (1989).

Clearly other, more general and higher order GM processes could be used to model the

stochastic TVP’s and the trend Tt , if such models can be identified satisfactorily from the

data.: for example, the higher order IRW’s (DIRW, TIRW etc.), the Integrated or Double

Integrated AutoRegressive (IAR, DIAR: see Young, 1994) model, and even more general

processes (e.g. Pedregal and Young, 1998b). However, the more complex of these models

introduce additional hyper-parameters into the model which would have to be well identified

from the data and optimised, thus introducing potential practical difficulties.

The overall SS model is constructed by the aggregation of the subsystem matrices defined in

(2c), with the observation equation defined by equation (2): i.e.,
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Observation Equation:         yt = Htxt + et                 (i)

State Equations          :          xt = Fxt−1 + Gη t           (ii)
(3)

If n = 2R ,  then F is an nxnblock diagonal with blocks defined by the Fi  matrices in (2c);

G  is an nxn  matrix constructed by the concatenation of the corresponding subsystem

matrices Gi  in (2c); Ht  is an appropriately defined 1xn  vector which relates the scalar

observation yt  to the state variables defined by (3)(ii), so that it represents the DHR model

(2); and η t  is an n dimensional vector containing, in appropriate locations, the zero mean,

white noise input vectors η i,t  (system disturbances) to each of the GRW models in (2c).

These white noise inputs are assumed to be independent of the observation noise et  and have

a covariance matrix Q.

3. ESTIMATION OF THE TIME VARIABLE PARAMETERS

The SS formulation of unobserved components models is particularly well suited to

estimation based on optimal Kalman filtering, often accompanied by optimal smoothing

procedures such as Fixed Interval Smoothing (FIS).  As in our previous publications, we use

the two step (prediction-correction) version of KF followed by a version of FIS algorithm

which is stable numerically and which has a structure allowing for variance intervention

(Young and Ng, 1989) and handling of missing observations and outliers. More specifically,

it is an adapted version combining Bryson and Ho's recursion for the Lagrange multipliers

(Bryson and Ho, 1969) with the state update recursion of Norton (1986). In relation to the

time series yt ,  t = 1,2,..., N , of N  samples, the filtering algorithm has the form:

1. Forward Pass Filtering Equations (Kalman, 1960)

Prediction:

x̂t|t−1 = Fx̂t−1

Pt|t−1 = FPt−1FT + GQrGT
(i) (4a)

Correction:

x̂t = x̂t|t−1 + Pt|t−1Ht
T 1 + Ht Pt|t−1Ht

T[ ]−1
yt − Ht x̂t|t−1{ }

Pt = Pt|t−1 − Pt|t−1Ht
T 1 + Ht Pt|t−1Ht

T[ ]−1
Ht Pt|t−1

    (ii) (4a)

while the FIS algorithm is in the form of a backward recursion operating from the end of the

sample set to the beginning.

2. Backward Pass Smoothing Equations (e.g. Bryson and Ho, 1969)
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x̂t|N = F−1 x̂t+1|N + GQrGT Lt[ ]
Lt = I − Pt+1Ht+1

T Ht+1[ ]T
FT Lt+1 − Ht+1

T {yt+1 − Ht+1x̂t+1}[ ]
Pt|N = Pt + PtF

T Pt+1|t
−1 Pt+1|N − Pt+1|t[ ] P

t+1|t
−1 FPt

(4b)

with LN = 0 .

In these algorithms, the nxn  Noise Variance Ratio (NVR) matrix Qr  and the nxn  matrix Pt

are defined as follows,

Qr = Q
σ2     Pt = Pt

*

σ2 (4c)

where Pt
* is the error covariance matrix associated with the state estimates. For simplicity, it

will be assumed that the NVR matrix Qr  is diagonal. Within the DHR context, these NVR

parameters are unknown and need to be estimated before the filtering and smoothing

algorithms can be utilised. Their estimation by optimisation in the frequency domain is

discussed in the next section 4.

Note that forecasting, interpolation and backcasting are an inherent part of the filtering and

smoothing algorithms (see Young, 1984; Harvey, 1989): if missing data anywhere within, or

immediately outside, the data set are detected, then the filtering and smoothing algorithms

simply replace the missing samples by their expectations, based on the DHR model and the

data. In the case of the filtering algorithm (4a), this yields the multi-step ahead forecasts;

while the smoothing equations (4b), provide the interpolation over gaps within the data set, or

backcasts at the beginning of the data.

Finally, it is worth noting that, if necessary, these filtering/smoothing algorithms can be made

computationally more efficient by taking advantage of factors such as the repeated

computation of some terms common to the forward and backward pass, the evaluation of

some forward pass terms prior to their storage for the backward pass, and exploiting the

sparse structure of the matrices involved. Such an improved computational algorithm is

implemented in microCAPTAIN (Young and Benner, 1991). See also Appendix 1 for a

further more specific discussion on the computational aspects.

4. OPTIMISATION OF THE HYPER-PARAMETERS

The recursive algorithms in equations (4a) and (4b) require estimates of the NVR matrix Qr .

The usual way of dealing with this estimation problem (see e.g. Harvey, 1989) is to formulate

it in Maximum Likelihood (ML) terms and obtain estimates of the NVR parameters (and any

other hyper-parameters, such as α  in the SRW model) using numerical optimisation. While

this method is generally accepted because of its strong theoretical basis, it has some practical

disadvantages. In particular, the optimisation can be restricted in various ways due to fact
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that, in this UC context where the ML function is defined by prediction error decomposition

(Schweppe, 1965) in terms of the Kalman filter innovations (recursive residuals), the

likelihood surface can be quite flat around its optimum. It is also a procedure that, in its

normal form, is heavily dependent on the length of the series, since the recursive algorithms

must be used to compute the ML function at each iteration in the numerical optimisation. In

order to counter these and other limitations, we have devised an alternative approach which

utilises a special form of optimisation in the frequency domain.  Although this approach is

not now based on ML and is not as generally applicable, it leads to a much better defined

optimum in the objective function-hyper-parameter space, with consequent advantages to

DHR modelling, both as regards convergence time and the number of parameters that can be

optimised simultaneously.

4.1 Spectral Analysis of the DHR model

The new method of optimising the hyper-parameters in the DHR model is formulated in the

frequency domain and based upon analytical expressions for the power spectra of the DHR

model class. In order to obtain these analytical expressions, it is necessary to determine the

spectral properties of both the TVP’s, as defined by their assumed stochastic models, and the

products of such parameters with the sine and cosine functions that characterise the DHR

model. As mentioned earlier, these TVP’s are normally described by any of the models

belonging to the GRW family.

The Pseudo-Spectra of Generalised Random Walk models

Consider first a UC model consisting of only an IRW trend (i.e. equation (2c)) with

α = β = γ = 1;δ = 0 ) plus a white noise irregular component. The resultant model can be

expressed in transfer function (reduced form) terms as,

yt = lt + et = 1

1 − L( )2 ηt−1 + et

where L  denotes the backward shift operator (i.e. Lyt = yt−1). Initially, the inherent non-

stationarity of the IRW process can be dealt with by taking second differences of yt  to yield,

∇ 2yt = ηt−1 + ∇ 2et

where ∇ = 1 − L( ) is the difference operator. For this stationary process the power spectrum

takes the form,

f ∇ 2y
(ω) = 1

2π
ση

2 +{2 − 2cos(ω)}2 σ2[ ]  ;     ω ∈ [0,π] (5)

 and it is straightforward to see that the pseudo-spectrum of yt  is given by,
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f y(ω) = 1
2π

ση
2

{2 − 2cos(ω)}2 + σ2












 . (6a)

Similarly, the pseudo-spectrum in the case of the simpler RW trend is given by,

f y(ω) = 1
2π

ση
2

2 − 2cos(ω)
+ σ2












 (6b)

The resulting spectral properties of the IRW and RW-type filters are shown graphically in

fig.1, for a selection of different NVR values.

(INSERT FIGURE 1)

In the case where the trend is modelled by an SRW process, the pseudo spectrum is

somewhat more complex and takes the form.

f y(ω) = 1
2π

ση
2

1 + α 2 − 2α cos(ω){ } 2 − 2cos(ω){ }
+ σ2













(6c)

Note how the introduction of the smoothing parameter α  allows for a continuous transition

between the RW model (α = 0) and the IRW model (α = 1). This advantageous property is

illustrated in fig.2. From the filter design point of view, the additional α  parameter allows for

varying the shape (width or bandpass) of the filter’s frequency response, while the NVR

parameter shifts the response vertically.

(INSERT FIGURE 2)

Clearly, the pseudo-spectra of other more general GM processes (see previous discussion in

section 2) can be analysed in a similar manner.

The Pseudo-Spectra of the Full DHR model

From the basic Fourier transform properties, the frequency response of amplitude modulated

signals of the form St = at cos ω jt( ), is known to be:

 f s ω( ) = 1

2
f A ω − ω j( ) + f A ω + ω j( )[ ]

where f A(ω) is the frequency response of at . Consider the case of a single frequency DHR

term, St = at cos(ω jt) + bt sin(ω jt) , in which the TVP associated with the sine and cosine

terms are modelled as two IRW processes with equal variance parameters ( σω j

2 ). The

pseudo-spectrum of St  then takes the form:
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fω j
(ω) = 1

2π
σω j

2

4 1 − cos(ω − ω j ){ } 2 +
σω j

2

4 1 − cos(ω + ω j ){ } 2















(7)

The RW and SRW cases may be obtained in the same way by replacing (6a) by (6b) or (6c)

respectively.

Now, if S(ω, ω j ) is defined as follows,

S(ω,ω j ) = 1
2π

1

4 1 − cos(ω − ω j ){ } 2 + 1

4 1 − cos(ω + ω j ){ } 2















then the pseudo-spectrum of the full DHR model (2) becomes:

f y(ω,σ 2 ) = σω j

2

j=0

R
∑ S(ω,ω j ) + σ2

2π
         σ 2 = σ2 σω0

2 σω1

2 ... σωR

2[ ] (8)

where R  is the total number of number of different frequency components included in the

model (see equations (2a) and (2b)). It will be noted that the additional term at j = 0 (i.e.

ω0 = 0) represents the zero frequency (DC) component and so accounts for the IRW trend

component which, as mentioned previously, has been absorbed rather conveniently into the

definition of S(ω, ω j ). Note also that this formula is linear in the variance parameters and, as

we shall see, this facilitates the initial estimation of the hyper-parameters. The extension of

S(ω, ω j ) to accommodate more complex combinations of RW, IRW and SRW defined

trends and parameters is obvious.

The dotted lines in fig.3 shows the pseudo-spectra of the components in a DHR model, with

an IRW trend and the TVP’s in the harmonic components modelled by RW processes. These

harmonic components correspond to a periodic process with a fundamental frequency of 12

samples and harmonics at 6, 4, 3 and 2.4 samples (typical of a model for a monthly time

series with annual seasonality).  Note that, on the linear scale, the components are well

separated spectrally and the ratio of maximum power to the minimum is of the order 103.

(INSERT FIGURE 3)

The close relationship of the DHR to Discrete Fourier Transform (DFT) or, equivalently,

the constant parameter Harmonic Regression (HR) model is clearly apparent from fig. 3. As

the σω j

2  (or more particularly as the ratio of this variance to the residual variance, σ2 , as

defined by the NVR) becomes smaller, which is equivalent to decreasing the potential

variability of the related sine and cosine amplitude parameters, the spectral peak of the jth

frequency component approaches the shape of spectral line, as in the case of the constant

parameters HR model. In other words, the DHR model can be considered as a logical

stochastic TVP (or nonstationary) version of HR and DFT models.
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4.2 Estimation in the Frequency Domain

Equation (8) shows that the spectrum of the DHR process can be considered as a linear

combination of known spectral terms, with the unknown variance parameters appearing as

associated regression coefficients. Clearly, therefore, one way of estimating the variance

parameter vector σ 2 = σ̂2 σ̂ω0

2 σ̂ω1

2 ... σ̂ωR

2[ ]T
 is to minimise a least squares objective

function J  of the form,

J( f y , f̂ y ) = f y(ωi ) − f̂ y(ωi ,σ̂
2 )[ ]2

i=0

T −1
∑  (9)

over T  distinct frequencies, ωi , i = 0,1,2,...,T −1, in the range 0 to 0.5, where f y(ω)  is the

empirical spectrum, while the model pseudo-spectrum f̂ y(ω,σ̂ 2 ) is defined as the following

linear function of the R + 2 unknown variance parameter estimates,

f̂ y(ω,σ̂ 2 ) = σ̂ω j

2

j=0

R

∑ S(ω,ω j ) + σ̂2

2π

A visual illustration of the estimation problem posed in these terms can be obtained by

referring again to fig.3, where the spectra of the IRW trend and the 5 harmonic components

with RW parameters (dotted lines) can clearly be adjusted by the above optimisation

approach to fit the Akaike Information Criterion (AIC) identified AR(14) spectrum (full line)

of the well known Airline Passenger (AP) monthly series (Box and Jenkins, 1970), which are

also plotted in fig.4.

While this linear least squares solution is attractive in its simplicity, practical experience has

shown that an alternative objective function,

JL ( f y , f̂ y ) = log f y(ωi ){ } − log f̂ y(ωi ,σ̂
2 ){ }[ ]2

i=0

T −1
∑ (10)

defined in logarithmic terms, yields improved estimation results, with a more clearly located

optimum and better defined estimates of the variance parameters. This arises predominantly

because the logarithmic spectra have clearer information on the shape of the spectral

signatures, particularly the ‘shoulders’ that are so important in defining the magnitude of the

variance parameters. This logarithmic measure is also intuitively rather natural in the signal

processing area since power spectra are usually presented and measured on logarithmic scales

such as decibels. The disadvantage of this approach is, of course, that JL  is a nonlinear

function of the unknown variance parameters and so they must be estimated by nonlinear

optimisation, as in the conventional ML optimisation case.

Fortunately, this nonlinear optimisation is quite straightforward and presents no difficulties.

Not only is the location of the optimum normally well defined, but the linear least squares
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solution (9) quickly and reliably provides very good initial conditions for the nonlinear

minimisation problem (10). Consequently optimisation algorithms with quadratic

convergence, that are otherwise sensitive to the initial conditions, can be used with

confidence. For this purpose, the objective functions have to fulfil certain conditions

(Deutsch, 1965) in order that the parameter estimates are mathematically acceptable, but it is

easy to show that the objective function (10) satisfies these conditions and is both continuous

and convex.

One final simplification is possible: if f y(ω)  is based on the estimated AutoRegressive (AR)

spectrum (see below), then the estimate of the residual white noise (one step ahead prediction

errors) from the AR model can be used to concentrate out the observation noise variance σ2

from the model pseudo-spectrum (8), i.e.,

f y (ω,σ 2 ) = σ2 f y(ω,σ2 )

σ2












= σ2

σω j

2

σ2
j=0

R
∑ S(ω,ω j ) + 1

2π













or equivalently

f y (ω, NVR) = σ2 NVRj
j=0

R
∑ S(ω,ω j ) + 1

2π








 (11)

where NVR  is the NVR vector with elements,

 
NVRj =

σω j
2

σ2 , j = 0,1,.., R

In this manner, the model pseudo-spectrum is defined directly in terms of the unknown NVR

values. This not only removes one parameter from the estimation problem but it also

introduces a common scale for the remaining unknown parameters which has numerical

advantages in the subsequent numerical optimisation. For instance, practical experience with

the spectral forms (8) and (11) over the past five years has demonstrated that the latter

formulation provides better defined solutions over a wide range of data series.

5.  THE COMPLETE DHR ESTIMATION ALGORITHM

In the case where a cyclical component is not present, the complete DHR estimation

algorithm consists of the following four steps.
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1.  Estimate an AR( n ) spectrum f y (ω) of the observation process

yt ,t = 1,2,..., N  and its associated residual variance σ̂2 , with the AR order n

normally identified by reference to the AIC. Note the R  significant peaks that

characterise the spectrum (these will normally include a fundamental frequency

and several of its associated harmonics).

2. Find the Linear Least Squares estimate of the NVR  parameter vector which

minimises the linear least squares objective function:

J( f y , f̂ y ) = f y(ωi ) − f̂ y(ωi , NVR)[ ]2

i=0

T −1
∑

where f̂ (ω, NVR) = σ2 NVRj
j=0

R
∑ S(ω,ω j ); ω0 and NVR0  refer to the trend term;

and the ω j , j = 1,2,..., R, are the R  significant frequencies identified from the

AR( n ) spectrum in step 1.

3. Find the Nonlinear Least Squares estimate of the NVR  parameter vector

which minimises nonlinear least squares objective function :

JL ( f y , f̂ y ) = log f y(ωi ){ } − log f̂ y (ωi , NVR){ }[ ]2

i=0

T −1

∑

using result from step 2. to define the initial conditions.

4. Use the NVR estimates from step 3. to obtain the recursive forward pass

(Kalman filter) and backward pass (FIS algorithm) smoothed estimates of the

components in the DHR model: i.e. the trend; the total cyclical and seasonal; the

fundamental/harmonic components; and the irregulars. In this form, the

algorithm can be used for forecasting, backcasting, and signal extraction (e.g.

seasonal or cyclical adjustment). Allowance for interventions and outliers, as

well as interpolation over gaps can be introduced in the normal manner, as

required.

If a cyclical component is identified then the above procedure is simply expanded to

accommodate this additional component (see the AP example in section 6.2 below).

This optimisation algorithm has been in continual use over the past five years, both in the

microCAPTAIN time series analysis program, and in research studies using extended DHR

models (see later) in the Matlab software system. In all cases, the algorithm has exhibited

excellent convergence characteristics, with rapid convergence to well defined NVR and other

hyper-parameter estimates.
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6.  A WELL KNOWN EMPIRICAL EXAMPLE REVISITED

The famous AP series shown in fig.4 is used here in order to both exemplify the results

obtained with the present DHR method and to facilitate comparison with the many previous

published results relating to this very well known and analysed series. In addition, the

standard ML method is used separately to estimate the unknown variance parameters; and the

resulting DHR and ML results are compared with those obtained using the STAMP program

(Koopmans et al, 1995), which also exploits ML optimisation but, this time, applied to

Harvey’s alternative Structural Model (SM).

Since the percentage fluctuations of the AP series about its long-term trend ‘might be

expected to be comparable at different sales volumes’ (Box and Jenkins, 1970), the AP series

is most often subjected to a ‘stationarity inducing’ logarithmic transform before analysis. In

order to demonstrate the power of the DHR model, however, we will consider also the

modelling and forecasting of the basic data without any pre-transform at all, thus forcing the

DHR model to explain the nonstationarity in both the mean and the variance of the original

data.  In avoiding any form of subjective pre-processing, this latter approach conforms with

our Data-Based Mechanistic (DBM) modelling philosophy (see e.g. Young and Pedregal,

1997; Young, 1998) which suggests that a minimum of  prior judgement should be imposed

upon the nature of the series.

(INSERT FIGURE 4)

6.1  The Basic DHR Model

The clear seasonal pattern in the series is confirmed by the AR(14) spectral estimates shown

already in fig.3, with visually significant peaks at periods of 12, 6, 4, 3 and 2.4 months, but

with no significant power at the Nyquist frequency. The strong trend component does not

mask these peaks in the AR(14) spectrum and so the frequencies used for the subsequent

analysis are easily defined as 0, 1/12, 1/6, 1/4, 1/3 and 1/2.4. Fig.5 illustrates the optimised

model fit in the frequency domain for the case when the series is logarithmically transformed:

here the trend is modelled by an IRW process and the seasonal component parameters by RW

processes.

(INSERT FIGURE 5)

Two typical sets of estimation results are shown in Table 1 (basic data with LLT trend and

IRW models for the seasonal component parameters) and Table 2 (logarithmically

transformed data with  IRW trend and RW models for the seasonal component parameters).

The first column of these Tables shows the values of the estimated NVR parameters obtained

via the first stage, linear optimisation; while the final stage nonlinear optimisation results are

presented in the second column. The third column of Table 1 and the third and fourth
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columns of Table 2 report the ML results. Also shown at the bottom of the Tables are the

variance of the innovations; the value of the log-likelihood for the optimised parameters in

each case; the Ljung-Box autocorrelation test for 12 lags; the Jarque-Bera normality test; and

the computational burden in millions of floating point operations (Mega-Flops).

Two versions of ML estimation are considered for comparison: the third column in Table 1

shows the ML results obtained with all the NVR’s of the seasonal component constrained to

be the same (this is a common assumption and is used in the STAMP and other similar

computer programs: see e.g. Koopmans et al., 1995; Pole et al, 1994). Unfortunately, when

all the NVR’s for the seasonal component are unconstrained, the ML optimisation does not

converge at all. In Table 2, the ML convergence is improved somewhat but it is still

necessary to constrain two of the NVR’s (for the harmonic components of periods 4 and 2.4

months) to be the same to obtain full convergence (see column 4: this was accomplished by

trial and error and is clearly not a feasible practical approach). Moreover, it will be noted that,

even when the ML optimisation procedure does converge, it takes much longer (particularly

in the unconstrained situation: see the last ‘Mega-Flops’ row), even though optimisation is

initiated from the converged NVR parameter estimates obtained by our frequency domain

optimisation method. Of course, convergence time also depends on both the formulation of

the ML optimisation routine and method of numerical optimisation. Here, the basic

prediction error formulation was utilised, involving full Kalman filter processing at each

iteration; and the ‘leastsq’ numerical optimisation method available in Matlab was used for

both DHR and ML optimisation. We realise, therefore, that improved convergence speed

might be possible with other numerical procedures but our frequency domain approach would

still be considerably faster than ML because of its inherent simplicity.

(INSERT TABLES 1 & 2)

There are a number of conclusions that can be drawn from these estimation results for the AP

data which confirm similar conclusions based on the DHR analysis of many other series over

the last five years.

1. The proposed method of frequency domain optimisation, based on the non-linear cost

function (10), provides a clear improvement over the simpler linear optimisation

approach using the cost function (9). Not only is the nonlinear cost function justified on

the basis of the spectral considerations discussed above, but it also leads to considerable

improvement in the statistical properties of the innovations: the innovations variance and

most of the statistical tests reported in the Tables are improved significantly after the

nonlinear second stage in the optimisation, is completed.

2. In terms of the values of the likelihood function and the statistical properties of the

innovations, the nonlinear optimisation produces a better solution than the constrained

ML estimation (although, we have found that it is often not quite as good as that obtained
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by unconstrained ML optimisation in those cases when ML convergence is achieved).

This is not surprising because the ML criterion is defined as an explicit, time domain

function of the normalised one-step-ahead prediction errors; whereas optimisation in the

frequency domain, as suggested in this paper, is not based on ML optimisation at all and

is primarily concerned with ensuring that the spectral properties of the estimated

components match the empirical AR spectrum of the data. In general, as in this example,

this tends to generate a solution which, in terms of the variance of the innovations, lies

somewhere between that obtained by the ideal of unconstrained ML optimisation, which

is difficult to consistently achieve in practice, and the reality of constrained ML

optimisation, which is used in commercial software, such as STAMP.

3. From the computational standpoint, the proposed method represents an extremely fast

alternative to the ML estimation. As pointed out previously, the likelihood surface for

many UC-type models tends to be very flat around the optimum, so that convergence

problems are quite common in the unconstrained case, where the number of hyper-

parameters is quite large compared with the constrained situation. Quite naturally, this

also leads to slow and often unacceptable convergence times when compared with the

very rapid convergence of the method proposed in this paper. This is especially true in the

completely unconstrained case, when ML optimisation can converge very slowly or may

not occur at all.

To provide further material for comparison, Table 3 shows the results for a number of models

estimated by our frequency domain method; while Table 4 shows the results obtained for

similar models by the STAMP program (Koopmans et al, 1995) which utilises constrained

ML estimation in the time domain. The first and second columns in both Tables present the

results for the original, un-transformed data, using LLT and IRW trends, respectively; while

the third and fourth columns are the equivalent results for the logarithmically transformed

series.

(INSERT TABLES  3 & 4)

In Table 3, the value of the likelihood function for the DHR model optimised by our

frequency domain method (which, it must be emphasised again, does not specifically seek to

optimise the likelihood) can be compared with the value for the constrained model optimised

by ML with the NVR parameters of the seasonal component constrained. These figures are

given in the ‘Log-Likelihood’ and ‘Constrained Lik.’ rows at the bottom of the table. In the

first 3 cases (columns 1 to 3), the likelihood is greater for the frequency domain approach;

and it is only slightly worse for the IRW model in the fourth column based on logarithmically

transformed data. In other words, even when the model is optimised in the frequency domain,

without any direct likelihood considerations, the method performs well in likelihood terms.

There are also concomitant advantages in forecasting terms, but these are discussed later.



-16 -

Table 4 shows the results obtained by the STAMP program (Koopmans et al, 1995) for the

same models as in Table 3. In all cases, the variance of the residuals is considerable larger

than in the comparable cases in Table 3. Note that, since the STAMP program does not allow

for the omission of any individual harmonics, all harmonics have to be present in the

estimated model. In this AP example, however, the spectrum shows clearly that the harmonic

of period 2 samples/cycle, at the Nyquist frequency, is not necessary. Together with the

constraint that all the hyper-parameters have to be the same, this places restrictions on the

estimation which probably account, in part, for the larger residual variances.

Of course, comparison of the results in tables 3 and 4 must be exercised with care since  it is

a comparison between two general approaches to time series, rather than a comparison of

two different methods of estimating the same model, as in Tables 1 and 2. Indeed, the same

care needs to be exercised in comparing the STAMP results in table 4 with our own version

of the ML procedure. For example, the STAMP model used to obtain the results in Table 4 is

naturally constrained by the model options available in the STAMP program. For example, it

incorporates a ‘trigonometric seasonal’ component defined in by the state equations (see

Koopmans et al, 1995), rather than the harmonic regression formulation of the DHR model.

And the hyper-parameters are defined as white noise variances,  rather than NVR’s as in the

DHR case.

Also, it will be noted from Table 4 that both STAMP models estimated on the basis of the

basic, un-transformed data produce zero estimates for the irregular components. This means

that the whole series is modelled by STAMP as simply the sum of the trend and the seasonal

component with zero residuals, so that all noise within the data has been distributed between

these two components. This problem is automatically avoided in our DHR modelling strategy

because of the definition of the NVR parameters: here, zero variance of the irregular

component would mean infinite NVR parameters, which is an impossible outcome of the

DHR modelling procedure. Of course, Koopmans et al (1995) would understandably argue

that, in this example, STAMP users would be advised to logarithmically transform the data

because of the changing variance associated with the seasonal component (see previous

comments in this regard), so that these ‘raw data’ results, as such, would not normally be

obtained. Indeed, we have included them here not as a comment on the performance of the

STAMP program, which has many virtues, but for completeness and to demonstrate that the

DHR model can handle such ‘badly behaved’ nonstationary data without the need for any

stationarity-inducing pre-transformation.

The signal extraction exercise using the frequency domain optimised DHR model produces a

pleasing decomposition of the series. For example, fig.6 shows the FIS estimated components

when an IRW trend is used, with IRW models for the seasonal component parameters. Here,

the trend and seasonal component have smoothly changing characteristics and the irregularity
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in the AP series has been accommodated almost entirely by the irregular series, which is of

very low and constant variance. In addition, the autocorrelation function of the innovations

sequence shows that it is satisfactorily white, as required. These results suggest that the KF

and FIS algorithms based on the optimised DHR model have successfully handled and

explained the dramatically changing variance and heteroskedasticity present in the raw data.

Finally, this signal extraction exercise reveals rather nicely another feature in the series that is

hardly distinguishable in the original raw data; namely the fact that the trend appears to

include a medium period cycle of just over four years which is, presumably, related to the

business cycle (see fig.6). This suggests that further analysis and refinement of the DHR

model might improve the proposed model: in particular, if this business cycle effect is

reasonably well defined, then it should be possible to include a quasi-cyclical DHR

component Ct  in the DHR model at the identified frequency (see equation (2b)) and so

improve both the signal extraction and the forecasting performance. This possibility is

considered in the next sub-section.

(INSERT FIGURE  6)

6.2  An Improved DHR Model

The addition of the medium term cyclical component into the DHR model fits very naturally

into the DHR analysis. The first stage of this extended analysis is to obtain a better estimate

of the spectrum at the low frequencies relating to the cycle (i.e. at periods of around four

years), since the previous AR(14) spectrum does not reveal any clear evidence for the

presence of such a cycle (otherwise it would have been incorporated at the start of the

analysis). This improved spectrum is generated straightforwardly by defining a finer

frequency axis and increasing the order of the AR spectrum from AR(14) to AR(54). Now, a

clearly defined peak appears in the spectrum at a fundamental period of 51 months, with two

other peaks at 25.5 and 17 months, which will be recognised as harmonics of this

fundamental period

The main problem with this high order AR(54) spectrum is that, while it nicely exposes the

lower frequency behaviour in the trend, it injects obviously spurious peaks and distortions

over the rest of the frequency axis, making estimation of the NVR parameters more difficult

for components defined in this ‘seasonal’ region. To overcome this problem, we simply

concatenate the original AR(14) and the new AR(54) spectra, using the higher order AR

spectrum to define the lower frequency cyclical band of the spectrum, and the lower order

AR spectrum to specify the higher frequency seasonal behaviour. The concatenation is then
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smoothed a little (using a simple IRW version of the FIS algorithm1), in order to remove the

minor distortion that arises at the boundary between the two component spectra because of

the concatenation operation.

Fig.7 compares this concatenated empirical spectrum with the optimised DHR model

spectrum achieved using the DHR model (2), with the cyclical component Ct  defined as

follows,

                Ct = α i,t cos f it( ) + βi,t sin f it( ){ }
i=1

3
∑ (12)

where the frequencies f i ; i = 1,2,3 correspond to the identified cyclical component

frequencies (i.e. at periods of 51, 25.5 and 17 months, respectively). The three peaks

associated with the cycle and its harmonics are very obvious in the figure, and it is clear that

this extended DHR model is explaining them very well.

(INSERT FIGURE  7)

This revised DHR model is an ingenious one: as far as we are aware, no previous analysis

has identified clearly the presence of the longer, 51 month period cycle in the AP data and

quantified its effect in a time series model form (although the possible presence of such a

cycle has been referred to on a few occasions). It is also a very useful model in forecasting

terms because the additional information provided by the added cyclical terms in the DHR

model leads to significant improvements in forecasting accuracy. In order to demonstrate this

improvement and to compare the forecasting results, both the original and revised DHR

models are optimised by different procedures. In particular, the original DHR model is

optimised by ML in the time domain using STAMP; while our frequency domain approach is

used both for the original and the revised model. In the latter two cases, the analysis is based

on the original un-transformed data (with IRW models used for the parameters in the

seasonal component and IRW models used for the parameters in the cyclical components). In

the STAMP analysis, on the other hand, the logarithmically transformed data is used, since

this is the only way it can handle well the changing variance of the seasonal component (see

previous discussion). However, in order to facilitate comparison, all the forecasting results

                                                

1 This IRW version of the FIS algorithm, which we term IRWSMOOTH, has been used in the microCAPTAIN

program for about twenty years and has proven very useful as a general tool for initial (non-optimised) trend

estimation and interpolation over gaps, smoothing , and smoothed differentiation of data. In this form, it is

related to the ‘Hodrick-Prescott’ filter with an adjustable NVR smoothing parameter (see the discussion in

Young and Pedregal, 1999a)
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refer to the original un-transformed data (with the STAMP results simply transformed back

into the original data form).

In these forecasting exercises, the last three years of data, from December 1957 to December

1960, are reserved for the comparative study. At each sample, all three models are re-

optimised and estimated on the basis of the past data; and they are then used to obtain up to

24 step-ahead true, ex-ante forecasts. This process is then repeated, expanding the sample by

one observation at each such step. The results of this exercise are shown in fig.8, where the

overall forecasting performance measures, plotted as a function of the forecast lead time, are:

the Mean Absolute Percentage Error (MAPE, upper plot); Percentage Root Mean Square

Error (PRMSE, middle plot) and the Mean Percentage Error (MPE, lower plot). The solid

lines show the variations in these measures for the original, simpler DHR model; the dashed

lines represent the STAMP results, for the standard STAMP model; and the dot-dashed lines

show the results for the improved DHR model, including the estimated ‘business cycle’.

(INSERT FIGURE  8)

The three plots in fig.8 present very interesting results. Firstly, it is clear that the two DHR

model forecasts, with and without the 51 month period cyclical component, are both

significantly better than those obtained using STAMP over most, but not all, of the range of

forecast lead times. Only at very small lead times are the STAMP results marginally better

than the improved DHR model. Moreover, the superiority of the DHR model results increases

substantially as the forecast horizon increases, especially in the case of the improved DHR

model. These results demonstrate that improved one-step-ahead forecasting performance

does not always imply better performance for longer forecast horizons. Secondly, judged by

the MPE results, the distribution of the forecast errors is superior for the DHR results than for

the STAMP results and the biases tend to be of opposite sign: STAMP tends to over-predict,

while DHR tend to under-predict to a lesser extent at these larger forecast lead times.

Finally, a specific ex-ante, 24 step-ahead forecasting example is shown in fig.9, where the

solid line represents the actual data; the stars are the forecasts from the improved DHR

model, including the cyclical component; and the plus signs are the STAMP forecasts, with

the STAMP standard error band shown dashed. It should be emphasised that these are true, 2

year ahead ex-ante forecasts: they are based only on the data up to the forecast origin in

December 1957. It is clear from this figure that the superior performance of the extended

DHR model is due mainly to the contribution that the longer term cycle makes to the

forecasts.

(INSERT FIGURE  9)

Before completing this example, two caveats are necessary. First, the usefulness of a model

with a longer period cycle included, such as that discussed above, is dependent upon how
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well the characteristics of the cycle are defined by the data and the degree to which the period

and phase of the cycle remain stationary over time into the future. The good forecasting

performance in this particular AP example is obviously a consequence of the stationarity of

the 51 month period cycle over the duration of the AP series.  If this cyclical component is,

indeed, a consequence of quasi-periodic ‘business cycle’ effects in the series, then it seems

unlikely that such stationarity would be maintained over a much longer time interval into the

future. Second, the results presented in this section are specific to the AP data: although the

same kind of comparative performance has been experienced with other series so far (see e.g.

Pedregal, 1995), it is difficult to generalise completely and, in other circumstances, our DHR

model-based approach may not prove superior to other alternatives, such as STAMP, in these

same respects. The approach is, however, more flexible in its formulation and

implementation than many current alternatives and we would expect it to always be very

competitive, if not superior.

7. CONCLUSIONS

This paper describes a new and flexible approach to nonstationary time series analysis based

on  a Dynamic Harmonic Regression (DHR) model of the Unobserved Components (UC)

type. The basic DHR model allows for the presence of trend, seasonal, cyclical and irregular

components and is formulated in a state space framework, which makes it particularly useful

for adaptive seasonal adjustment, signal extraction, interpolation over gaps, variance

intervention and forecasting (or backcasting) of nonstationary time series. The approach

exploits the powerful properties of the Kalman Filter and Fixed Interval Smoothing

algorithms to recursively estimate the various unobserved components, with the hyper-

parameters of the DHR model optimised in a novel manner using a cost function defined in

terms of the difference between the logarithmic pseudo-spectrum of the model and the

logarithmic autoregressive spectrum of the data.

It is important to emphasise that this new approach to the optimisation of hyper-parameters is

not based on Maximum Likelihood (ML) concepts. In all of the applications considered over

the last five years, however, the cost function has been better defined than the alternative ML

cost function and has yielded both improved convergence properties and considerably

reduced numerical requirements. It would appear that, as in the AP example discussed here,

the main advantage of the new approach is its improved multi-step ahead forecasting

performance. In those cases where the a fixed order AR spectrum does not adequately

accommodate both the seasonal and cyclical components, because the periods of the latter are

too long, different order AR spectra are used to describe the lower and upper frequency

ranges, and these are then concatenated to synthesise a composite spectrum, which forms the

basis for the hyper-parameter optimisation.
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Various extensions of the DHR model are possible. For example, the basic approach

described in this paper can be extended to the full UC model (1), including the (possibly

dynamic and nonlinear) effects of one or more input or exogenous variables. This kind of UC

model has been used in the forecasting of electricity demand (Pedregal and Young, 1996,

1998a), river flows (Young et al, 1997) and hourly telephone numbers for Barclaycard plc. In

the case where there are seasonal and input variable effects, the optimisation involves an

iterative ‘back-fitting’ procedure in which, alternately,  the periodic effects are optimised by

our frequency domain method and the input transfer functions (which can involve

‘intervention’ variables) are estimated using optimal Instrumental Variable (IV) methods (see

Young, 1984).  Although we concentrate on DHR models in this paper, the analysis carried

out has been extended to other types of periodic models, such as the ‘trigonometric

seasonality’ model used by Harvey (1989) and others, where the seasonal components are

defined within the state equations, rather than the observation equation.  Indeed, such models

can be combined with the DHR model to allow for ‘modulated cycles’ (Pedregal and Young,

1996) in which, for example, the seasonal cycle is modulated by a cycle of another, longer

period.

Finally, if the UC model involves static or dynamic nonlinear effects, then a general approach

(e.g. Young, 1993, 1998) involves the use of FIS and TVP estimation for non-parametric

estimation of the nonlinearity. This is then followed by parameterisation of the nonlinearity,

usually in state-dependent terms, and final parametric optimisation of this identified

nonlinear UC model. Examples of this approach are described in Young and Beven (1994),

who exploit it to identify and estimate rainfall-flow models; Young and Pedregal (1997,

1999b), who show that nonlinearly defined relativistic investment variables (relative to GNP)

are more useful for forecasting unemployment rate in the USA than the standard investment

variables; and Young (1998) who applies it to a variety of different systems.
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Appendix:  Estimation of the State Space Model Disturbances

Following FIS estimation, the smoothed estimate êt|N  of observation noise is found trivially

by subtracting the smoothed output estimate ŷt|N  from the observations yt . A smoothed

estimate η̂t|N  of the state disturbance vector is obtained by comparing,

x̂t+1|N = Fx̂t|N + Gη̂t|N

with the smoothed state update equation (4b),

x̂t+1|N = Fx̂t|N − GQrG
T Lt

This then yields the following relationship between η̂t|N  and the Lagrange Multiplier vector

Lt ,

η̂t|N = −QrGT Lt

which is easily computable.

It is interesting to compare our implementation of the FIS algorithm with that suggested

by Koopmans (1993), which the author claims to be the most numerically efficient approach

to FIS estimation. The main iteration in the Koopmans smoother is that on the vector rt ,

where,

rt-1 = (F − Kt Ht )
T rt + Ht

T Dt
−1ỹt

where Dt = 1 + Ht Pt|t−1Ht
T  (scalar in this case), FKt (where Kt  is the Kalman gain)  and ỹt

(the KF innovation) are calculated and stored during the forward KF pass. The smoothed

estimate of the disturbance is then calculated as η̂t|N = Qrrt . However, if G  considered as

an identity matrix, which is not a restrictive assumption in this context, then rt = −Lt  and so

the FIS algorithm used in the present paper, which is based on the algorithm suggested

originally by Bryson and Ho (1969), turns out to be algebraically equivalent to the Koopmans

algorithm. Moreover, the complexity of the main iteration in the Koopmans smoothing

algorithm is similar to the main iteration (the Lagrangian update) of the algorithm employed

here. In particular, the Koopmans algorithm, as published, requires a very similar number of

floating point operations per iteration: (2...3)n2 + (5...8)n , where n is the size of the state

vector and the ranges (2...3) and (5..8) result from various possible structures of F and Qr

matrices. Consequently, the speed of execution will be very similar and will depend on

programming trade-offs (e.g.. memory vs. speed) and similar technical modifications.
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Figure 1: Spectral characteristic of RW and IRW filters for different values

of the NVR parameter.
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Figure 3: Empirical AR(14) spectrum (solid) and pseudo-spectra of DHR components

(dotted) for the Airline Passenger (AP) series.
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Figure 4: AP series taken from Box and Jenkins (1976).
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Figure 5: AR(14) spectrum (solid) vs. the DHR fitted spectrum (dashed) for the

AP series.
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Figure 6: The estimated unobserved components for the AP series.
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Figure 7: Optimised DHR model fit to the concatenated composite AR spectrum of the

AP data: in addition to the standard seasonal components associated with the annual cycle,

the model includes a medium term cycle of period 51 samples/cycle and two of its

harmonics.



-29 -

0 5 10 15 20 25
0

5

10

M
A

P
E

Forecasting performance: DHR(solid); STAMP(dashed) & Cyclical(dot dashed)

0 5 10 15 20 25
0

5

10

P
R

M
S

E

0 5 10 15 20 25
-5

0

5

10

Steps ahead (months)

M
P

E

Figure 8: Relative forecasting performance for the AP series using different measures:

Mean Absolute Percentage Error (MAPE, upper plot); Percentage Root Mean Square

Error (PRMSE, middle plot) and the Mean Percentage Error (MPE, lower plot).

Standard seasonal DHR model results (solid); STAMP results (dashed); and DHR

seasonal plus cyclical model results (dot-dashed). The two DHR models have  LLT;

RW cyclical and IRW seasonal model parameters; while the STAMP results are

obtained from the analysis of logarithmically transformed data using the Basic

Structural Model (BSM: see Koopmans et al, 1995).
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Figure 9: Relative 24 month ahead, ex-ante forecasting performance over the latter two years

of the AP series: actual data (solid); STAMP results (+); and seasonal plus cyclical DHR

model results (*). The graph also shows the standard errors of STAMP forecasts (dotted) and

the DHR model trend-plus-cycle component (thick solid).
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TABLES 1 to 4

Period L i n e a r Non Linear Cons t ra ined
ML

Trend 4.41e-6  5.43e-
1

(-)      (4.27)

3.79e-17  5.64e-01

(-)      (4.019)

8.99e-3 1.00e-
3

(52.09)
(40.82)

12 1.36e-6

(31.61)

9.349e-06

(27.119)

4.15e-6

(40.44)

6 1.18e-6

(34.00)

4.072e-06

(30.927)

»

4 1.21e-5

(31.88)

1.167e-05

(32.002)

»

3 1.95e-6

(35.55)

4.200e-06

(33.488)

»

2.4 3.25e-7

(31.46)

2.087e-06

(27.551)

»

σ̂a
2 127.39 123.66 140.73

Log-Likelihood -324.126 -289.488 -293.781

Q(12) 13.99 13.22 18.33

Jarque-Bera 1.161 2.302 2.665

Mega-Flops 0.450 82.057

Table 1: Estimation results for AP series based on the analysis of the original un-transformed
data and LLT trend: the numbers in brackets are the t-ratios; the ‘»’ symbol means that the
NVR is the same for all other harmonic components as the harmonic of period 12
(constrained optimisation); σ̂a

2
 is the variance of the innovations; Q(12) is the Ljung-Box

statistics for whiteness of the innovations with 12 lags; H(50) is a standard ratio of variances
test for the detection of heteroskedasticity (the distribution of the statistic is F 50, N−50( ) ); and
Jarque-Bera is a Normality test. Note that convergence did not occur at all in the
unconstrained ML case, so no results are shown.
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Period L i n e a r Non Linear Cons t ra ined
ML

ML

Trend 5.805e-03

(25.991)

1.453e-02

(27.052)

8.326e-03

(8.036)

8.248e-03

(7.923)

12 3.309e-02

(7.052)

4.220e-02

(21.853)

5.027e-03

(12.817)

1.675e-02

(6.395)

6 5.903e-02

(12.578)

1.482e-02

(24.239)

» 6.315e-03

(6.534)

4 2.212e-02

(0.745)

9.513e-03

(20.519)

» 7.663e-5**

(7.115)

3 7.448e-03

(1.587)

7.093e-03

(23.738)

» 1.497e-03

(4.880)

2.4 1.878e-03

(0.400)

5.705e-03

(22.513)

» 7.663e-05**

(7.115)

σ̂a
2 1.637e-03 1.481e-03 1.598e-03 1.450e-03

Log-Likelihood 361.353 363.161 360.934 368.093

Q(12) 35.289 18.196 22.124 14.399

Jarque-Bera 0.397 0.915 0.416 0.119

Mega-Flops 0.232 26.944 120.455

Table 2: Estimation results for AP series based on the analysis of the logarithmically
transformed data and IRW trend (other information as for Table 1). Note that the ‘**’ symbol
indicates constrained parameters: convergence did not occur in the completely unconstrained
ML case but convergence was possible if the two NVR’s at periods of 4 and 2.4 months were
constrained to be equal.
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Period Raw Data

( L L T )

Raw Data

( I R W )

Data in logs

( L L T )

Data in logs

( I R W )

Trend 3.79e-17  5.64e-01

(-)      (4.019)

5.563e-03

(20.760)

4.69e-04  3.11e-01

(11.126)   (6.640)

1.453e-02

(27.052)

12 9.349e-06

(27.119)

3.035e-05

(28.919)

3.891e-02

(20.778)

4.220e-02

(21.853)

6 4.072e-06

(30.927)

6.032e-06

(29.339)

1.483e-02

(24.420)

1.482e-02

(24.239)

4 1.167e-05

(32.002)

1.352e-05

(29.442)

9.071e-03

(21.106)

9.513e-03

(20.519)

3 4.200e-06

(33.488)

4.764e-06

(30.289)

8.511e-03

(23.540)

7.093e-03

(23.738)

2.4 2.087e-06

(27.551)

2.547e-06

(25.081)

5.898e-03

(22.642)

5.705e-03

(22.513)

σ̂a
2 123.66 139.39 1.379e-03 1.481e-03

Log-Likelihood -289.488 -293.999 367.330 360.313

Constrained Lik. -293.781 -294.180 365.800 360.934

Q(12) 14.27 24.67 9.512 18.19

Jarque-Bera 3.211 1.411 3.201 0.915

Table 3: Results for the AP series using the un-transformed and logarithmically transformed
series, with different assumptions for the trend model. The row ‘Constrained Lik.’ denotes
the value of the Log-Likelihood function when ML optimisation was performed with all of
the NVR’s for the seasonal harmonics constrained to be the same and is included for
comparison with the fully unconstrained results  (other information as for Table 1).

Component Raw Data
( L L T )

Raw Data
( I R W )

Data in logs
( L L T )

Data in logs
( I R W )

Level 15.579
('concentrated')

0
('zero')

2.982e-4
(0.364)

0
('zero')

Slope 1.112e-02
(4.12)

0.701
(1.11)

0
('zero')

8.757e-6
(6.206)

Seasonal 1.221
(2.80)

1.471
('concentrated')

3.558e-6
          (6.282)

3.828e-6
(6.013)

Irregular 0
('zero')

0
('zero')

2.343e-4
('concentrated')

4.658e-4
('concentrated')

σ̂a
2 157.94 173.47 1.477e-03 1.635e-03

Q(12) 45.136 45.66 9.622 22.641

Jarque-Bera 0.370 0.983 1.730 0.873

Table 4: STAMP program results for the AP series. The numbers in brackets are the t-ratios;
other information as for Table 1.


