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1. INTRODUCTION

The environment is a complex assemblage of in-
teracting physical, chemical, and biological pro-
cesses, many of which are inherently nonlinear,
with considerable uncertainty about both their
nature and their interconnections. It is surprising,
therefore, that stochastic dynamic models are the
exception rather than the rule in environmental
science research. One reason for this anomaly lies
in the very successful history of physical science
over the last century. Modelling in deterministic
terms has permeated scientific endeavour over this
period and has led to a pattern of scientific inves-
tigation which is heavily reductionist in nature.
Such deterministic reductionism appears to be
guided by a belief that physical systems can be
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described very well, if not exactly, by determinis-
tic mathematical equations based on well known
scientific laws, provided only that sufficient de-
tail can be included to describe all the physical
processes that are perceived to be important by
the scientists involved. This leads inexorably to
large, nonlinear models reflecting the scientist’s
perception of the environment as an exceedingly
complex dynamic system.

Although deterministic reductionism still domi-
nates environmental modelling, there are some
signs that attitudes may be changing. There is
a growing realization that, despite their super-
ficially rigorous scientific appearance, simulation
models of the environment based on determinis-
tic concepts are more extensions of our mental
models and perceptions of the real world than
necessarily accurate representations of the real
world itself. The recent revived interest in the
‘top-down’ approach to modelling in the hydro-
logical literature (e.g. Jothityangkoon et al., 2000
and the references therein), for instance, is a re-
sponse to the relative failure of the alternative
reductionist (‘bottom-up’) philosophy in this area



of study. But such scepticism is not new. It has its
parallels in the environmental (e.g. Young, 1978,
1983; Beck, 1983) and ecosystems (e.g. see prior
references cited in Silvert, 1993) literature of the
1970s and early 1980s, where the present author’s
contributions were set within the context of ‘badly
defined’ environmental systems. To quote from
Young (1983), which echoes earlier ideas (Young,
1978), for instance:

“Although such reductionist analysis is perfectly re-
spectable, it must be used very carefully; the dangers
inherent in its application are manifold, but they are not,
unfortunately, always acknowledged by its proponents. It
is well known that a large and complex simulation model,
of the kind that abounds in current ecological and en-
vironmental system analysis, has enormous explanatory
potential and can usually be fitted easily to the meagre
time-series data often used as the basis for such analysis.
Yet even deterministic sensitivity analysis will reveal the
limitation of the resulting model: many of the ‘estimated’
parameters are found to be ill-defined and only a compara-
tively small subset is important in explaining the observed
system behavior.

Of course, over-parameterization is quite often acknowl-
edged, albeit implicitly, by the reductionist simulation
model-builder. Realizing the excessive degrees of freedom
available for fitting the model to the data, he will often fix
the values of certain ‘better known’ parameters and then
seek to fit the model by optimizing the chosen cost function
(usually the sum of the squares of the difference between
the model outputs and the observations) in relation to the
remaining parameters, which are normally few in number.
In this manner, the analyst ensures that the cost function-
parameter hypersurface is dominated by a clearly defined
optimum (a minimum in the least-squares case), so that
estimation of the parameters which define the optimum
becomes more straightforward.

But what is the value of this optimization exercise in
relation to the specification of the overall model? Clearly a
lower-dimensional parameter space has been located which
allows for the estimation of a unique set of parameter
values. However, this has been obtained only at the cost
of constraining the other model parameters to fixed values
that are assumed to be known perfectly and are defined in
relation to the analyst’s prior knowledge of the system. As
a result, the model has a degree of ‘surplus content’ not es-
timated from the available data, but based on a somewhat
ad hoc evaluation of all available prior knowledge of the
system and coloured by the analyst’s preconceived notions
of its behavioral mechanisms.

On the surface, this conventional simulation modeling ap-
proach seems quite sensible: for example, the statistician
with a Bayesian turn of mind might welcome its tendency
to make use of all a priori information available about the
system in order to derive the a posteriori model structure
and parameters. On the other hand, he would probably be
concerned that the chosen procedures could so easily be
misused: whereas the constrained parameter optimization
represents a quantitative and relatively objective approach,
it is submerged rather arbitrarily within a more qualitative
and subjective framework based on a mixture of academic
judgment and intuition. Such a statistician would enquire,
therefore, whether it is not possible to modify this frame-
work so that the analyst cannot, unwittingly, put too much
confidence in a priori perceptions of the system and so
generate overconfidence in the resulting model.”

These early papers then went on to present ini-
tial thoughts on such an objective, statistical ap-
proach to modelling poorly defined systems that
tried to avoid the dangers of placing too much
confidence in prior perceptions about the nature
of the model. They also adumbrate very similar
anti-reductionist arguments that have appeared
recently in the hydrological literature and express
some of these same views within a hydrological
context (Jakeman and Hornberger, 1993, Beven,
2000). In the subsequent period since the ear-
lier papers were published, however, the author
has sought to develop this statistical approach
within a more rigorous systems setting that he
has termed Data-Based Mechanistic (DBM) mod-
elling. Prior to discussing the DBM approach, the
present paper will first outline the major concepts
of statistical modelling that are important in any
modelling process. Subsequently, a number of ex-
amples will be presented that illustrate the utility
of DBM modelling in practical environmental sci-
ence and systems analysis.

2. STATISTICAL IDENTIFICATION,
ESTIMATION AND VALIDATION

The statistical approach to modelling assumes
that the model is stochastic: in other words, no
matter how good the model and how low the noise
on the observational data happens to be, a certain
level of uncertainty will remain after modelling
has been completed. Consequently, full stochastic
modelling requires that this uncertainty, which
is associated with both the model parameters
and the stochastic inputs, should be quantified in
some manner as an inherent part of the modelling
analysis.

Within the control and systems literature such a
stochastic modelling procedure is usually termed
‘Identification’. In the statistical, time series lit-
erature, however, it is normally considered in
two main stages: identification of an appropri-
ate, identifiable model structure; and estimation
(optimization, calibration) of the parameters that
characterize this structure, using some form of
estimation or optimization. Sometimes, a further
stage of validation (or conditional validation: see
later) is defined, in which the ability of the model
to explain the observed data is evaluated on data
sets different to those used in the model iden-
tification and estimation stages. In this section,
we outline these three stages in order to set the
scene for the later analysis. This discussion is
intentionally brief, however, since the topic is so
large that a comprehensive review is not possible
in the present context.



2.1 Structure and Order Identification

In the DBM approach to modelling, the iden-
tification stage is considered as a most impor-
tant and essential prelude to the later stages of
model building. It usually involves the identifi-
cation of the most appropriate model order, as
defined in dynamic system terms. However, the
model structure itself can be the subject of the
analysis if this is also considered to be ill-defined.
In the DBM approach, for instance, the nature
of linearity and nonlinearity in the model is not
assumed a priori (unless there are good reasons
for such assumptions based on previous data-
based modelling studies). Rather it is identified
from the data using nonparametric and paramet-
ric statistical estimation methods based on a suit-
able, generic model class. Once a suitable model
structure has been defined within this class, there
are a variety of statistical methods for identify-
ing model order, some of which are mentioned
later. In general, however, they exploit some order
identification statistics, such as the correlation-
based statistics popularized by Box and Jenkins
(1970), the well known Akaike Information Crite-
rion (AIC: Akaike, 1974), and the more heuristic
YIC statistic (see e.g. Young et al., 1996) which
provides an alternative to the AIC in the case
of transfer functions (where the AIC tends to
identify over-parameterized models).

2.2 Estimation (Optimization)

Once the model structure and order have been
identified, the parameters that characterize this
structure need to be estimated in some manner.
There are many automatic methods of estima-
tion or optimization available in this age of the
digital computer. These range from the simplest,
deterministic procedures, usually based on the
minimization of least squares cost functions, to
more complex numerical optimization methods
based on statistical concepts, such as Maximum
Likelihood (ML). In general, the latter are more
restricted, because of their underlying statistical
assumptions, but they provide a more thought-
ful and reliable approach to statistical inference;
an approach which, when used correctly, includes
the associated statistical diagnostic tests that are
considered so important in statistical inference.
In the present DBM modelling context, the es-
timation methods are based on optimal, linear
Instrumental Variable (IV) methods for transfer
function models (e.g. Young, 1984 and the ref-
erences therein) and nonlinear modifications of
these methods (see later).

2.3 Conditional Validation

Validation is a complex process and even its
definition is controversial. Some academics (e.g.

Konikow and Brederhoeft (1992), within a ground-
water context; Oreskes et al. (1994), in relation
to the whole of the earth sciences) question even
the possibility of validating models. To some de-
gree, however, these latter arguments are rather
philosophical and linked, in part, to questions of
semantics: what is the ‘truth’; what is meant by
terms such as validation, verification and con-
firmation? etc. Nevertheless, one specific, quan-
titative aspect of validation is widely accepted;
namely ‘predictive validation’ (often referred to as
just ‘validation’), in which the predictive potential
of the model is evaluated on data other than that
used in the identification and estimation stages of
the analysis. While Oreskes et al. (1994) dismiss
this approach, which they term ‘calibration and
verification’, their criticisms are rather weak and
appear to be based on a perception that “models
almost invariably need additional tuning during
the verification stage”. While some modellers may
be unable to resist the temptation to carry out
such additional tuning, so negating the objectivity
of the validation exercise, it is a rather odd reason
for calling the whole methodology into question.
On the contrary, provided it proves practically
feasible, there seems no doubt that validation, in
the predictive sense it is used here, is an essential
pre-requisite for any definition of model efficacy,
if not validity in a wider sense.

It appears normal these days to follow the Poppe-
rian view of validation (Popper, 1959) and con-
sider it as a continuing process of falsification.
Here, it is assumed that scientific theories (mod-
els in the present context) can never be proven
universally true; rather, they are not yet proven
to be false. This yields a model that can be
considered as ‘conditionally valid’, in the sense
that it can be assumed to represent the best
theory of behaviour currently available that has
not yet been falsified. Thus, conditional validation
means that the model has proven valid in this
more narrow predictive sense. In the rainfall-flow
context considered later, for example, it implies
that, on the basis of the new measurements of
the model input (rainfall) from the validation data
set, the model produces flow predictions that are
acceptable within the uncertainty bounds associ-
ated with the model.

Note this stress on the question of the inherent un-
certainty in the estimated model: one advantage
of statistical estimation, of the kind considered
in this chapter, is that the level of uncertainty
associated with the model parameters and the
stochastic inputs is quantified in the time series
analysis. Consequently, the modeller should not
be looking for perfect predictability (which no-one
expects anyway) but predictability which is con-
sistent with the quantified uncertainty associated
with the model.



It must be emphasized, of course, that conditional
validation is simply a useful statistical diagnostic
which ensures that the model has certain desirable
properties. It is not a panacea and it certainly
does not prove the complete validity of the model
if, by this term, we mean the establishment of the
‘truth’ (Oreskes et al., 1994). Models are, at best,
approximations of reality designed for some spe-
cific objective; and conditional validation merely
shows that this approximation is satisfactory in
this limited predictive sense. In many environ-
mental applications, however, such validation is
sufficient to establish the credibility of the model
and to justify its use in operational control, man-
agement and planning studies.

3. DATA-BASED MECHANISTIC (DBM)
MODELLING

The term ‘data-based mechanistic modelling’ was
first used in Young and Lees (1993) but the basic
concepts of this approach to modelling dynamic
systems have developed over many years. It was
first applied within a hydrological context in the
early 1970s, with application to modelling water
quality in rivers (Beck and Young, 1975) and
rainfall-flow processes (Young, 1974; Whitehead
and Young, 1975). Indeed, the DBM water quality
and rainfall-flow models discussed later in the
present paper are a direct development of these
early models.

In DBM modelling, the most parametrically effi-
cient (parsimonious) model structure is first in-
ferred statistically from the available time se-
ries data in an inductive manner, based on a
generic class of black-box models (normally lin-
ear or nonlinear differential equations or their
difference equation equivalents). After this ini-
tial black-box modelling stage is complete, the
model is interpreted in a physically meaningful,
mechanistic manner based on the nature of the
system under study and the physical, chemical,
biological or socio-economic laws that are most
likely to control its behaviour. By delaying the
mechanistic interpretation of the model in this
manner, the DBM modeller avoids the temptation
to attach too much importance to prior, subjec-
tive judgement when formulating the model equa-
tions. This inductive approach can be contrasted
with the alternative hypothetico-deductive ‘Grey-
Box’ modelling, approach, where the physically
meaningful but simple model structure is based
on prior, physically-based and possibly subjective
assumptions, with the parameters that character-
ize this simplified structure estimated from data
only after this structure has been specified by the
modeller.

Other previous publications, as cited in Young
(1998), map the evolution of the DBM philosophy

and its methodological underpinning in consider-
able detail, and so it will suffice here to merely
outline the main aspects of the approach:

(1) The important first step is to define the
objectives of the modelling exercise and to
consider the type of model that is most ap-
propriate to meeting these objectives. Since
DBM modelling requires adequate data if it
is to be completely successful, this stage also
includes considerations of scale and the data
availability at this scale, particularly as they
relate to the defined modelling objectives.
However, the prior assumptions about the
form and structure of this model are kept at
a minimum in order to avoid the prejudicial
imposition of untested perceptions about the
nature and complexity of the model needed
to meet the defined objectives.

(2) Appropriate model structures are identified
by a process of objective statistical inference
applied directly to the time-series data and
based initially on a given generic class of
linear Transfer Function (TF) models whose
parameters are allowed to vary over time, if
this seems necessary to satisfactorily explain
the data.

(3) If the model is identified as predominantly
linear or piece-wise linear, then the constant
parameters that characterize the identified
model structure in step 2. are estimated
using advanced methods of statistical esti-
mation for dynamic systems. The methods
used in the present paper are based on op-
timal Instrumental Variable (IV) estimation
algorithms (see Young, 1984) that provide
a robust approach to model identification
and estimation and have been well tested in
practical applications over many years. Here
the important identification stage means the
application of objective statistical methods
to determine the dynamic model order and
structure. Full details of these time series
methods are provided in the above references
and they are outlined more briefly in both
Young and Beven (1994) and Young et al.
(1996).

(4) If significant parameter variation is detected
over the observation interval, then the model
parameters are estimated by the applica-
tion of an approach to time dependent pa-
rameter estimation based on the applica-
tion of recursive Fixed Interval Smoothing
(FIS) algorithms (e.g. Bryson and Ho, 1969;
Young, 1984; Norton, 1986). Such parameter
variation will tend to reflect nonstationary
and nonlinear aspects of the observed sys-
tem behaviour. In effect, the FIS algorithm
provides a method of nonparametric esti-
mation, with the Time Variable Parameter



(TVP) estimates defining the nonparametric
relationship, which can often be interpreted
in State-Dependent Parameter (SDP) terms
(see later).

(5) If nonlinear phenomena have been detected
and identified in stage 4, the nonparametric
state dependent relationships are normally
parameterized in a finite form and the result-
ing nonlinear model is estimated using some
form of numerical optimization, such as non-
linear least squares or Maximum Likelihood
(ML) optimization.

(6) Regardless of whether the model is identified
and estimated in linear or nonlinear form,
it is only accepted as a credible representa-
tion of the system if, in addition to explain-
ing the data well, it also provides a descrip-
tion that has direct relevance to the physi-
cal reality of the system under study. This
is a most important aspect of DBM mod-
elling and differentiates it from more classical
‘black-box’ modelling methodologies, such as
those associated with standard TF, nonlin-
ear autoregressive-moving average-exogenous
variables (NARMAX), neural network and
neuro-fuzzy models.

(7) Finally, the estimated model is tested in
various ways to ensure that it is condition-
ally valid (see Young, 2001a,b). This can in-
volve standard statistical diagnostic tests for
stochastic, dynamic models, including anal-
ysis which ensures that the nonlinear effects
have been modelled adequately (e.g. Billings
and Voon, 1986). It also involves validation
exercises, as well as exercises in stochastic
uncertainty and sensitivity analysis.

Of course, while step 6. should ensure that the
model equations have an acceptable physical in-
terpretation, it does not guarantee that this in-
terpretation will necessarily conform exactly with
the current scientific paradigms. Indeed, one of
the most exciting, albeit controversial, aspects of
DBM models is that they can tend to question
such paradigms. For example, DBM methods have
been applied very successfully to the characteri-
zation of imperfect mixing in fluid flow processes
and, in the case of pollutant transport in rivers,
have led to the development of the Aggregated
Dead Zone (ADZ) model (Beer and Young, 1983;
Wallis et al., 1989). Despite its initially unusual
physical interpretation, the acceptance of this
ADZ model (e.g. Davis and Atkinson, 2000 and
the prior references therein) and its formulation
in terms of physically meaningful parameters, se-
riously questions certain aspects of the ubiquitous
Advection Dispersion Model (ADE) which pre-
ceded it as the most credible theory of pollutant
transport in stream channels (see the comparative
discussion in Young and Wallis, 1994).

One aspect of the above DBM approach which dif-
ferentiates it from alternative deterministic ‘top-
down’ approaches (e.g. Jothityangkoon et al.,
2000) is its inherently stochastic nature. This
means that the uncertainty in the estimated
model is always quantified and this information
can then be utilized in various ways. For instance,
it allows for the application of Monte Carlo-based
uncertainty and sensitivity analysis, as well as the
use of the model in statistical forecasting and data
assimilation algorithms, such as the Kalman filter.
The uncertainty analysis is particularly useful be-
cause it is able to evaluate how the covariance
properties of the parameter estimates affect the
probability distributions of physically meaning-
ful, derived parameters, such as residence times
and partition percentages in parallel hydrological
pathways (see e.g. Young, 1992, 1999a and the
examples below).

The DBM approach to modelling is widely appli-
cable: It has been applied successfully to the char-
acterization of numerous environmental systems
including: the development of the ADZ model
for pollution transport and dispersion in rivers
(e.g. Wallis et al., 1989; Young, 1992); rainfall-flow
modelling and forecasting (Young, 2001b and the
prior references therein); adaptive flood warning
(Lees et al., 1994; Young and Tomlin, 2000); and
the modelling of ecological and biological systems
(Jarvis et al., 1999); Other applications, in which
the DBM models are subsequently utilized for
control system design, include: the modelling and
control of climate in glasshouses (e.g. Lees et al.,
1996), forced ventilation in agricultural buildings
(e.g. Price et al., 1999), and inter-urban road traf-
fic systems (Taylor et al., 1998). They have also
been applied in the context of macro-economic
modelling (e.g. Young and Pedregal, 1999).

4. THE STATISTICAL TOOLS OF DBM
MODELLING

The statistical and other tools that underpin
DBM modelling are dominated by recursive meth-
ods of time series analysis, filtering and smooth-
ing. These include: optimal Instrumental Variable
(IV) methods of identifying and estimating dis-
crete and continuous-time transfer function mod-
els (e.g. Young, 1984); Time Variable Parameter
(TVP) estimation and its use in the modelling
and forecasting of nonstationary time series (e.g.
Young, 1999b and the prior references therein);
and State Dependent Parameter (SDP) parame-
ter estimation methods for modelling nonlinear
stochastic systems (see Young, 1978, 1984, 1993,
1998, 2000, 2001a; Young and Beven, 1994). Here,
the TVP and SDP estimation is based on opti-
mized Fixed Interval Smoothing (FIS) algorithms.



These recursive statistical methods can be uti-
lized also for other environmental purposes. For
example, they can provide a rigorous approach
to the evaluation and exploitation of large sim-
ulation models (e.g. Young et al., 1996), where
the analysis provides a means of simplifying the
models. Such reduced order representations can
then provide a better understanding of the most
important mechanisms within the model; or they
can provide dominant mode models that can be
used for control and operational management sys-
tem design, adaptive forecasting, or data assimila-
tion purposes (see e.g. Young et al., 1996; Young,
1999a). The DBM data analysis tools can also be
used for the statistical analysis of nonstationary
data, of the kind encountered in many areas of
environmental science (see Young, 1999b). For ex-
ample, they have been applied to the analysis and
forecasting of trends and seasonality in climate
data (e.g. Young et al., 1991); and the analysis of
palaeoclimatic data (Young and Pedregal, 1998).

5. PRACTICAL EXAMPLES

Two practical examples will be considered here,
both concerned with hydrological systems. The
first will show how even purely linear DBM mod-
elling can provide a powerful approach to analyz-
ing experimental data. However, many environ-
mental systems are nonlinear and so the second
example will show SDP modelling procedures can
be exploited to handle such nonlinearity.

5.1 A Linear Example: Modelling Solute Transport

The first model to be considered seriously in
DBM terms was the ADZ model for the transport
and dispersion of solutes in river systems, as
mentioned earlier. This model has also led to
related models that describe the imperfect mixing
processes that characterize mass and energy flow
processes in the wider environment (see e.g. Young
and Lees, 1993; Price et al., 1999)

This example is concerned with the DBM/ADZ
modelling of input-output data shown in figure
1. These were obtained from a bromide tracer
experiment carried out in a Florida wetland area
receiving treated domestic wastewater for further
nutrient removal. The experiment was part of
a study carried out by Chris Martinez and Dr.
William R. Wise of the Environmental Engineer-
ing Sciences Department, University of Florida for
the City of Orlando. The study objective was to
determine residence times for each wetland cell
in the system and to assess whether the same
degree of treatment could be maintained should
the wastewater loading be raised from 16 to 20
million gallons per day. The bromide tracer was
injected 765 metres upstream of a weir, at which
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Fig. 1. Wetland tracer experiment data: the input
ut is an impulsive or ‘gulp’ application of
bromide tracer (dashed line) and the output
yt is the concentration of bromide measured
every two hours at a downstream weir (full
line).

samples were taken with a sampling interval ∆t
of 2 hours.

The first step in DBM modelling is to identify a
suitable model from a generic model class that
is both capable of explaining the data in a para-
metrically efficient manner and producing a model
that can be interpreted in physical terms. Based
on the previous research described in the above
references, a reasonable model class is the linear
TF model in continuous or discrete time form.
As we shall see, such TF models are not only
able to explain the tracer data well, they can also
be interpreted in multi-reach ADZ model terms
that have physical meaning. Here, we will consider
the discrete-time TF model and utilize the SRIV
algorithm (a simplified version of the optimal IV
algorithm mentioned earlier) to identify the model
order and estimate the parameters 2 .

The impulsive input is not persistently exciting
but the SRIV algorithm has no difficulty identi-
fying and estimating a low order model. The best
identified TF, based on the YIC criterion, is either
3rd or 4th order but subsequent analysis, described
below, suggests that the latter is superior from a
physical standpoint. The estimated [4 2 22] (4th

order denominator, 2nd order numerator and a 22
sampling interval pure time delay) takes the form:

yt =
B̂(z−1)
Â(z−1)

ut−22 + ξt (1)

where,

Â(z−1) = 1−3.67z−1+5.06z−2−3.11z−3+0.72z−4

2 Continuous time TF estimation using the continuous-
time SRIV algorithm yields similar (albeit not identical)
results but the discrete-time analysis is more convenient in
terms of the subsequent analysis.
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B̂(z−1) = 0.00103− 0.00101z−1

Here the ‘hat’ denotes the estimated value; z−i is
the backward shift operator (i.e. z−iyt = yt−i); yt
is the observed tracer concentration at the weir
and ut is the impulsive input of tracer (186.33
mg/l), both measured at the tth sampling in-
stant. Note that the large ‘advective’ time delay
of 22 sampling intervals (44 hrs.) is the time
taken for the solute to first reach the weir. The
noise ξt, which represents the quantification of
all stochastic influences including measurement
noise, is small and the model explains the data
very well with a Coefficient of Determination (or
Nash Efficiency in the hydrological literature)
based on the response error of R2

T = 0.997 (i.e.
99.7% of the output variance is explained by the
model).

Unfortunately, despite its ability to describe the
data very well, the model (1) is not immediately
acceptable from a DBM standpoint, primarily
because the eigenvalues are {0.988, 0.964, 0.860±
0.132j} and the pair of complex roots is difficult
to justify in ADZ modelling terms. In particular,
the elemental, single reach ADZ model is a first
order differential equation and so, other than in
exceptional circumstances, multiple reach ADZ
models must be characterized by real eigenvalues
when considered in TF terms.

In the present circumstances, the most obvious
approach is to re-estimate the model in a form
where the eigenvalues are constrained to be real.
This was carried out by means of constrained non-
linear least squares optimization using the leastsq
optimization procedure in MatlabTM. To ensure
that the most parametrically efficient model was
obtained, both [3 2 22] and [4 2 22] models were
considered in this analysis but the latter yielded
much the best constrained model, which has the
following form:

yt =
B̂(z−1)
Â(z−1)

ut−22 + ξt (2)

where,

Â(z−1) = (1− 0.980z−1)(1− 0.855z−1)3

B̂(z−1) = 0.00127− 0.00121z−1

This model is well defined statistically and it
explains 99.7% of the experimental data (R2

T =
0.997), the same as the unconstrained model (1).
Figure 2 compares the model output (full line)
with the measured output yt (circular points).

Unlike the TF model (1), the model (2) not only
has four real eigenvalues, as required, but three of
these are repeated, so defining three identical ADZ
reaches. These eigenvalues define ADZ residence
times (time constants) of 99 hours and 12.8 hours
(x3), giving a total estimated residence time for
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Fig. 2. Comparison of the DBM model output (full
line) and tracer experiment data (circular
points). Also shown are the inferred slow
flow component (dashed line ) and quick flow
component (dotted line).

Fig. 3. Block diagram of transfer function decom-
positions that can be interpreted in physi-
cal terms: fully parallel decomposition (up-
per plot); equivalent parallel-serial decompo-
sition (lower plot).

the wetland cell is 137.4 hours (99+3x12.8). One
particular physically meaningful decomposition
and interpretation of the model defined in this
manner is obtained by partial fraction expansion
of the TF in (2). This consists of two parallel
pathways, each consisting of three ADZ reaches,
as shown in the top block diagram of figure 3.

The ‘quick-flow’ pathway has three identical ADZ
reaches connected in series, each with a residence
time of 12.8 hours; while the ‘slow-flow’ pathway
is similar but with one of the reaches replaced
by the longer ADZ residence time of 99 hours
associated with the other identified eigenvalue
(0.98). The total travel time for this complete
system is 181.5 hours (the sum of the 44 hour
advective time delay and the cumulative overall
time constant of 137.4 hours). This means that
the ‘dispersive fraction’ (see Wallis et al., 1989;
Young and Wallis, 1994; Young, 1999a) is 0.76
(i.e. 137.4 ÷ 181.5): in other words, 76% of the
water appears to be effective in dispersing the
solute. This is a very high proportion, reflecting



the nature of the system in this case, with a
much higher potential for dispersion of tracer
than in normal, faster moving streams, where the
dispersive fraction is normally in the range 0.3-
0.4. The inferred responses of the two parallel
pathways are plotted in figure 2: the dotted line
shows the estimated concentration changes in
the quick pathway, which accounts mainly for
the initial response measured at the weir; the
dashed line are the estimated changes in the slow
pathway, and these are responsible for the raised
tail of the measured response.

It is possible to compute estimates of other phys-
ical attributes associated with the model. First,
the steady state gains associated with the two
parallel pathways define the partitioning of the
flow, with 33% of flow associated with the quick
pathway and 67% with the slow pathway. And
since the flow rate is known in this example, the
Active Mixing Volumes (AMVs: Young and Lees,
1993), based on the estimated partitioned flow,
are 361m3 in the quick pathway and 5, 656m3 in
the slow pathway. As a result, the total estimated
AMV is 5, 656 + 3x361 = 6739m3, which seems
reasonable when compared with the 9, 749m3 for
the total volume of the wetland, estimated by
physical measurement. This suggests that about
70% of the wetland is important in dispersing
the tracer (and, therefore, the waste water) and
compares reasonably with the dispersive fraction
derived percentage of 76%.

Of course, all of the results above are statistical
estimates and so they are inherently uncertain.
The advantage of the DBM approach is that we
can quantify and consider the consequences of
this uncertainty (see Young, 1999a). For instance,
based on the covariance matrix of the parame-
ters produced by the SRIV estimation analysis,
empirical probability distributions, in the form
of histograms, can be computed for the ‘derived’
physical parameters, such as the residence times,
partition percentages, AMVs, total AMV and
steady state gain, using Monte Carlo Simulation
(MCS) analysis. Figure 4 is a typical example of
such analysis: it shows the normalized empirical
distributions for the two residence times obtained
by MCS using 10,000 random realizations (the
procedure used here is discussed in Young, 1999a).

Of course, it should be noted that the parallel
decomposition of the estimated TF used above is
not unique: there are other decompositions that
are just as valid and give precisely the same yt
response. For example, two other examples are:
(i) a parallel decomposition of the two ADZs with
residence times 99 and 12.8 hours, in series with
two other identical ADZs, both with residence
times 12.8 hours (see lower block diagram of
figure 3); (ii) various decompositions including
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Fig. 4. MCS analysis results: normalized his-
tograms of the slow (left panel) and quick
(right panel) residence times.

feedback processes. However the latter seem less
supportable in physical terms and are rejected
according to the DBM ethos.

Finally, how can decompositions of ADZ reaches,
such as those shown in figure 3 be interpreted in
terms of the wetland system? The most plausible
mechanism is that the quick parallel pathway
represents the ‘main stream-flow’ that is relatively
unhindered by the vegetation; while the slow
pathway represents the solute that is captured by
the heavy vegetation and so dispersed more widely
and slowly before reaching the weir. It is this latter
pathway, which we have shown above accounts
for some 67% of the flow, together with the large
associated dispersive fraction of 76%, that is most
useful in terms of nutrient removal, since it allows
more time for the biological activity to take place.

5.2 A Nonlinear Example: Rainfall-Flow Modelling

This example is concerned with the analysis of
daily rainfall, flow and temperature data from the
‘ephemeral’ Canning River in Western Australia
which stops flowing over Summer, as shown in
figure 5. These data have been analyzed before
and reported fully in Young et al. (1997). The re-
sults of this previous analysis are outlined briefly
below but most attention is focussed on more
recent analysis that shows how the inductive DBM
modelling can help to develop and enhance alter-
native conceptual (‘grey-box’) modelling that has
been carried out previously in a more conventional
hypothetico-deductive manner.

Young et al. (1997) show that, in this exam-
ple, the most appropriate generic model form
is the nonlinear SDP model (see above, section
4). Analysis of the rainfall-flow data in figure
5, based on this type of model, is accomplished
in two stages. First, nonparametric estimates of
the SDPs are obtained using the State Depen-
dent parameter Auto-Regressive eXogenous Vari-
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Fig. 5. Daily rainfall-flow and temperature data
for the ephemeral Canning River in Western
Australia for the period 23rd March 1985 to
26th February, 1987.

able (SDARX) model form (see Young, 2001a,b
in which it is discussed at some length within a
rainfall-flow context):

yt = zTt pt + et et = N(0, σ2) (3)

where,

zTt = [yt−1 yt−2 . . . yt−n rt−δ . . . rt−δ−m]
pt = [a1(zt) a2(zt) . . . an(zt) b0(zt) . . . bm(zt)]T

where, in the present context, yt and rt are,
respectively, the measured flow and rainfall and
δ is a pure advective time delay. Here, n = 2,
m = 3, δ = 0 and the parameters are all assumed
initially to be dependent on a state variable zt.
In this case, the SDP analysis then shows that
the state dependency is apparently in terms of
the measured flow variable (i.e. zt = yt: see later
explanation) and is limited to those parameters
associated with the rainfall rt.

In the second stage of the analysis, the nonpara-
metric estimate of the nonlinearity is parameter-
ized in the simplest manner possible; in this case
as a power law in yt. The constant parameters of
this parameterized nonlinear model are then esti-
mated using a nonlinear optimization procedure
(see Young, 2001b). The resulting model is the
following simplified version of the nonlinear SDP
Transfer Function (SDTF) model (e.g. Young,
2000):

yt =
B̂(z−1)
Â(z−1)

ut + ξt (4)

where,

Â(z−1) = 1− 1.646z−1 + 0.658z−2

B̂(z−1) = 0.0115 + 0.0185z−1 − 0.0028z−2

and

ut = c.yβ̂t .rt (5)

with β̂ = 0.85. This shows that the input variable
ut is a nonlinear function in which the measured
rainfall rt is multiplied by the flow raised to
a power β̂, with the normalization parameter c
simply chosen so that the steady state gain of the
linear TF between ut and yt is unity 3 . In other
words, the SDP analysis shows, in a relatively
objective manner, that the underlying dynamics
are predominantly linear but the overall response
is made nonlinear because of a very significant
input nonlinearity.

This model not only explains the data well (R2
T =

0.958) it is also consistent with hydrological the-
ory, as required by the tenets of DBM modelling.
This suggests that the changing soil-water storage
conditions in the catchment reduce the ‘effective’
level of the rainfall and that the relationship
between the measured rainfall and this effective
rainfall (or rainfall excess) ut is quite nonlinear.
For example, if the catchment is very dry because
little rain has fallen for some time, then most new
rainfall will be absorbed by the dry soil and little,
if any, will be effective in promoting increases in
river flow. Subsequently, however, if the soil-water
storage increases because of further rainfall, so
the ‘run-off’ of excess water from the catchment
rises and the flow increases because of this. In this
manner, the effect of rainfall on flow depends upon
the antecedent conditions in the catchment and a
similar rainfall event occurring at different times
and under different soil-water storage conditions
can yield markedly different changes in river flow.

The linear TF part of the model conforms also
with the classical ‘unit hydrograph’ theory of
rainfall-flow dynamics: indeed, its unit impulse
response at any time is, by definition, the unit
hydrograph. And the TF model itself can be seen
as a parametrically efficient method of quantify-
ing this unit hydrograph. Additionally, as in the
solute transport example, the TF model can be
decomposed by partial fraction expansion into a
parallel pathway form which has a clear hydro-
logical interpretation. In particular, it suggests
that the effective rainfall is partitioned into three
pathways: the instantaneous effect, arising from
the [2 3 0] TF model form which, as might be
expected, accounts for only a small 5.8% of the
flow; a fast flow pathway with a residence time of
2.65 days which accounts for the largest 53.9% of
the flow; and a slow flow pathway of 19.86 days
residence time accounting for the remaining 40.3%
of the flow. It is this latter pathway that leads
to an extended tail on the associated hydrograph
and can be associated with the slowly changing

3 This is an arbitrary decision in this case. However, if the
rainfall and flow are in the same units, then this ensures
that the total volume of effective rainfall is the same as the
total flow volume.



baseflow in the river. (for a more detailed expla-
nation and other examples, see Young, 1992, 1993,
1998, 2001b, Young and Beven, 1994; Young et al.,
1997).

The most paradoxical and, at first sight, least
interpretable model characteristic is that the ef-
fective rainfall nonlinearity is a function flow. Al-
though this is physically impossible, the analysis
produces such a clearly defined relationship of this
sort that it must have some physical connotations.
The most hydrologically reasonable explanation
is that the flow is acting as a surrogate for soil
water storage. Of course, it would be better to
investigate this relationship directly by measur-
ing the soil-water storage in some manner and
incorporating these measurements into the SDP
analysis. Unfortunately, it is much more difficult
to obtain such ‘soil moisture’ measures and these
were not available in the present example.

The temperature measurements are available,
however, and this suggests that we should explore
the model (4) further, with the object of enhanc-
ing its physical interpretation using these addi-
tional data. Two interesting conceptual (‘grey-
box’) models of rainfall-flow dynamics are the
Bedford-Ouse River model (e.g. Whitehead and
Young, 1975); and a development of this, the
IHACRES model (Jakeman et al., 1990). Both of
these ‘Hybrid-Metric-Conceptual’ (HCM) models
(Wheater et al., 1993) have the same basic form as
(4), except that the nature of the effective rainfall
nonlinearity is somewhat different. In the case of
the IHACRES model, for instance, this nonlinear-
ity is modelled by the following equations:

τs(Tt) = τse
T̄t−Tt
f (6a)

st = st−1 +
1

τs(Tt)
(rt − st−1) (6b)

ut = c.sβt .rt (6c)

where Tt is the temperature; T̄t is the mean
temperature; st represents a conceptual soil-water
storage variable; and c, τs, f and β are a priori
unknown parameters. Comparing (6c) with (5),
we see that the main difference between the two
models is that the measured yt in (5), acting
as a surrogate for soil-water storage, has been
replaced by a modelled (or latent) soil-water stor-
age variable st. The model (6b) that generates
this variable is a first order discrete-time storage
equation with a residence time τs(Tt) defined as
τs multiplied by an exponential function of the
difference between the temperature Tt and its
mean value T̄t, as defined in (6a).

In the original IHACRES model (e.g. Jakeman
and Hornberger, 1993), T̄t is normally set at 20◦C,
but the estimation results are not sensitive to this

value. Also, st is not raised to a power, as in (6c).
Some later versions of IHACRES have incorpo-
rated this parameter, but it has been added here
so that the two nonlinearities in (5) and (6c) can
be compared. More importantly, its introduction
is practically important in this particular example
since, without modification, the IHACRES model
is not able to model the ephemeral Canning flow
very well.

Using a constrained nonlinear optimization proce-
dure procedure similar to that in the previous ex-
ample, the parameters in this modified IHACRES
model are estimated as follows:

Â(z−1) = 1− 1.737z−1 + 0.745z−2

B̂(z−1) = 0.0285 + 0.140z−1 − 0.160z−2

τ̂s = 65.5, f̂ = 30.1; β̂ = 6.1 and T̄t = 15.9

These parameters are all statistically well defined
and the model explains 96.9% of the flow yt
(R2

T = 0.969), marginally better than the DBM
model. Moreover, as shown in figure 6, it performs
well in validation terms when applied, without
re-estimation, to the data for the years 1977-78.
The coefficient of determination in this case is
0.91 which is again better than that achieved by
the DBM model (0.88). However, when validated
against the 1978-79 data, the positions are re-
versed and the DBM model is superior. Overall,
therefore, the two models are comparable in their
ability to explain and predict the Canning River
data.
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Fig. 6. Validation results on 1977-78 data.

Figure 7 compares the measured rainfall rt (upper
panel) with the effective rainfall (middle panel), as
computed by equation (6c). It is clear that, not
surprisingly, the nonlinear transformation pro-
duced by equations (6a)-(6c) has a marked effect:
in particular, as shown in figure 8, the power law
transformation in (6c), with β = 6.1 consider-
ably modifies the soil-water storage st, effectively
reducing it to zero, in relative terms, over the



Summer period, as required. The reason why the
modified IHACRES and DBM models perform
similarly becomes clear if we compare the normal-
ized (since they differ by a scale factor) effective
rainfall variables for both models, as shown in the
lower panel of figure 7 (modified IHACRES, full
line; DBM, dashed line). The similarity between
these variables is obvious and the normalized im-
pulse responses (unit hydrographs) of the models
are also closely comparable.
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1985.4 1985.6 1985.8 1986 1986.2 1986.4 1986.6 1986.8 1987
0

1

2

3

4

5

6
Soil-Water Storage Variables

Date

N
or

m
al

is
ed

 S
oi

l-
W

at
er

 S
to

ra
ge

 V
ar

ia
bl

es

Fig. 8. Comparison of the estimated soil-water
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Finally, it must be emphasized that this example
is purely illustrative and it is not suggested that
the modified IHACRES model identified here can-
not be improved upon by the introduction of some
alternative nonlinear mechanism. For instance,
the estimation of a power law nonlinearity with
such a large power of 6.1 seems a rather odd
way to handle this type of nonlinearity, although
the reader will see from figures 7 and 8 that it
is very effective. Nevertheless, the example illus-
trates well how DBM modelling can, in a reason-
ably objective manner, reveal the nature of the
nonlinearity required to model the data well and
then seek out a parameterization that achieves
this. In this example, it clearly demonstrates that

the standard IHACRES model nonlinearity can-
not do this unless it is modified in some manner.
Of course, the power law nonlinearity is not the
only nor necessarily the best way of achieving
this. For example, Ye et al. (1997) introduce a
threshold-type nonlinearity on st, which makes
good physical sense, and obtain reasonable results
with R2

T values of around 0.88-0.89 for estimation
and 0.82-0.88 for validation.

6. CONCLUSIONS

For too long in the environmental sciences, de-
terministic reductionism has reigned supreme and
has had a dominating influence on mathematical
modelling in almost all areas of the discipline.
This paper has argued that the uncertainty which
pervades most environmental systems demands
an alternative approach, where stochastic mod-
els and statistical modelling procedures provide
a means of acknowledging this uncertainty and
quantifying its effects. But the conventional sta-
tistical approach to stochastic model building is
too often posed in a ‘black-box’ manner that
fails to produce models that can be interpreted
in physically meaningful terms. The Data-Based
Mechanistic (DBM) approach to modelling dis-
cussed in this paper tries to correct these de-
ficiencies. It provides a modelling strategy that
not only exploits powerful statistical techniques
but also produces models that can be interpreted
in physically meaningful terms that are normally
more acceptable to environmental scientists and
engineers.
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